Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

JAEA Reports

Research and development plan for advanced high temperature gas cooled reactor fuels and graphite components (Contract research)

Sawa, Kazuhiro; Ueta, Shohei; Shibata, Taiju; Sumita, Junya; Ohashi, Jumpei; Tochio, Daisuke

JAERI-Tech 2005-024, 34 Pages, 2005/03

JAERI-Tech-2005-024.pdf:2.15MB

The Very-High-Temperature Reactor (VHTR) is one of the strong candidates for the Generation IV Nuclear Energy System. JAERI has developed Zirconium carbide (ZrC)-coated fuel particle and ZrC coating layer is expected to maintain its intactness under higher temperature and burn-up comparing conventional SiC-coating layer. JAERI carries out (1) ZrC-coating process development by large-scale coater, (2) inspection method development and (3) irradiation test and post irradiation experiment of ZrC coated particles. Also, JAERI carries out reactivity insertion tests to clarify the coating failure mechanism and tries to increase allowable temperature limit in case of reactivity insertion accident. Furthermore, JAERI develops non-destructive evaluation methods for mechanical properties of graphite components by ultrasonic testing and micro-indentation technique. This report describes these research and development plan and results of FY 2004 as a MEXT contact research.

Journal Articles

Research and development on HTGR fuel in the HTTR project

Sawa, Kazuhiro; Ueta, Shohei

Nuclear Engineering and Design, 233(1-3), p.163 - 172, 2004/10

 Times Cited Count:59 Percentile:95.46(Nuclear Science & Technology)

In the high temperature gas-cooled reactors (HTGRs), refractory coated fuel particles are employed as fuel to permit high outlet coolant temperature. The High Temperature Engineering Test Reactor (HTTR) employs Tri-isotropic (Triso) coated fuel particles in the prismatic fuel assembly. Research and development on the HTTR fuel has been carried out spread over about 30 years, in fuel fabrication technologies, fuel performance, and so on. Furthermore, for upgrading of HTGR technologies, an extended burnup TRISO-coated fuel particle and an advanced type of coated fuel particle, ZrC-coated fuel particle in order to keep the integrity at higher operating temperatures has been developed. The present paper provides experiences and current status of research and development works for the HTGR fuel in the HTTR Project.

Journal Articles

The High temperature gas cooled reactor fuel

Sawa, Kazuhiro; Ueta, Shohei; Iyoku, Tatsuo

Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 10 Pages, 2003/09

This paper provides present status of research and development for the coated fuel particle (CFPs) including the advanced ZrC-CFP. Current HTGR employs so-called TRISO-CFPs with SiC layer. In safety design of the HTGR fuels, it is important to retain fission products within CFPs so that their release to primary coolant does not exceed an acceptable level. The behavior of TRISO-CFPs has been investigated through experiments and reactor operation. These data show excellent performance of the TRISO-CFPs when they are correctly fabricated. On the other hand, the crystalline material comprising the SiC layer has a tendency to decompose at high temperature. The transition temperatures of beta-SiC (as-deposited) to alpha-SiC vary from 1600 to 2200$$^{circ}$$C. ZrC is one of the transition metal carbides which are characterized by the high melting point and the thermodynamic stability etc. The CFPs with CVD-ZrC coatings have been investigated including the fabrication processes and characterization techniques developments.

Journal Articles

Advanced coated particle fuels; Experience of ZrC-triso fuel development and beyond

Ogawa, Toru; Minato, Kazuo; Sawa, Kazuhiro

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 6 Pages, 2003/04

no abstracts in English

JAEA Reports

Plan to development of ZrC-TRISO coated fuel particle and construction of ZrC coater

Ueta, Shohei; Tobita, Tsutomu*; Ino, Hiroichi*; Takahashi, Masashi*; Sawa, Kazuhiro

JAERI-Tech 2002-085, 41 Pages, 2002/11

JAERI-Tech-2002-085.pdf:2.66MB

no abstracts in English

Journal Articles

Research and development of ZrC-coated UO$$_{2}$$ particle fuel in Japan Atomic Energy Research Institute

; Ikawa, Katsuichi; ; ; Iwamoto, K.

Nuclear Fuel Performance, p.163 - 169, 1985/00

no abstracts in English

JAEA Reports

Deposition of LTI Pyrolytic by a Noggle without Water Cooling

; Ikawa, Katsuichi

JAERI-M 9568, 34 Pages, 1981/07

JAERI-M-9568.pdf:2.1MB

no abstracts in English

Oral presentation

Design study on fuel and reactor core for plutonium burner high temperature gas-cooled reactor

Goto, Minoru; Inaba, Yoshitomo; Fukaya, Yuji; Ueta, Shohei; Aihara, Jun; Tachibana, Yukio; Kunitomi, Kazuhiko

no journal, , 

A concept of a plutonium burner HTGR (High Temperature Gas-cooled Reactor) with a high nuclear proliferation resistance has been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to attain the high burn-up, we propose to introduce a PuO$$_{2}$$-YSZ (Yttria Stabilized Zirconia) fuel kernel with ZrC coating to the plutonium burner HTGR. In this study, we conduct design of the coated fuel particle and of the reactor core to confirm the feasibility of the plutonium burner HTGR. This study was started in FY2014 and will be completed in FY2017, and the implementation is on schedule. This paper describes the implementation of the first and the second year.

10 (Records 1-10 displayed on this page)
  • 1